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ABSTRACT

This document collects the work during the second year master internship at the
Brain Institute of Paris (ICM) associated to the M2 master studied at Sorbonne
University. The main objective has been the study and analysis of 2D and 3D brain
cell images. More precisely, the segmentation and tracking of this cells as it can
give essential information about the migration and behaviour of tumors. Several
models for two-classes semantic segmentation have been compared in 2D datasets
and instance segmentation has been performed using Mask-RCNN. Future work
aims at expand it to 3D datasets working with different object representation like
point clouds or meshes instead of stack images and perform tracking on both 2D
and 3D datasets.
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1 Introduction

1.1 Scientific problem

Brain tumors represent one of the most fatal cancers and account for substantial morbidity
and mortality [I]. The histo-molecular classification following the World Health Organization
(WHO) criteria, has deeply evolved in the last years and it currently required the integration
of histological features with molecular biomarkers to define a broad range of brain tumors
[2]. However, the survival rates of high-grade gliomas has not improved in the last 20 years
and there is an unmet need to provide novel therapeutic targets and improve the therapeutic
options [I]. One of the most important molecular markers in gliomas is isocitrate dehydrogenase
(IDH) mutations are frequently found in low and high-grade gliomas and have a profound
impact in the cellular metabolism and tumor microenvironment, in close relationship with the
production of an onco-metabolite produced by this mutation (D2-hydroxyglutarate, or D2-HG)
[3, 4]. Furthermore, due to the central nervous system (CNS) localization, it is difficult to
dynamically analyze the biology of the evolution of gliomas but recent efforts shed light in
the molecular alterations that are produced during treatment, suggesting that these tumors
are highly heterogeneous and with an important plasticity to develop resistance to different

therapeutic approaches [5].

1.2 Current knowledge

With the advent of new imaging technologies, there are currently many ex vivo and in vitro
approaches allowing to robustly mimic the gliomas and its microenviroment with the possibility
to analyze the 3D morphology and the movement and their spatio-temporal relationship [6]-[10].
The vast majority of these methods allow correct analysis of the shape, morphology and its
cross-talk with the microenvironment, although the 3D analysis is usually limited mostly due
to computational cost to perform this analysis and therefore its applicability is still limited in
biology and health sciences [11]. However, novel methods allowing to correctly, rapidly and
robustly infer the shape analysis of objects are currently available [12], as well as methods
to infer the 3D objects tracking (i.e. cells) [I3] and to combine it with physical modeling

to interpret the consequences of the interaction of tumors cells with their microenvironment [14].

In this project we will use 3 different but complementary approaches to thoroughly describe the
shape morphology analysis and its correlation with their genomic background of different brain
tumors types considering different exposure to treatment, the network relationship with different
cell types or with the microenvironment and vasculature by using human brain organoids, in
vitro 3D shape analysis of human immune cells of different glioma subtypes as well as the
iDISCO visualization of different glioma mouse models. Brain organoids offer the possibility of

real-time studies while recapitulating the human brain microenvironment. This type of model
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has demonstrated an unparalleled ability to predict treatment response in cancer patients
[15]-[17]. Recently, Linkous et al [18] demonstrated the feasibility of using brain organoids for
high-throughput screening of therapeutic compounds against glioblastomas (GBM), the most
frequent and aggressive high-grade glioma. Finally, others [19] 20] have shown the relevance of
using this type of organoid to study invasion in GBM. The processes involved in the invasion
of GBMs are regulated by molecular mechanisms that are still poorly understood, and rarely
studied taking into account the heterogeneity of GBM cells, their plasticity in response to
therapeutic stress, and their evolution in the brain microenvironment, considering the 3D shape
analysis and its relationship with their genomic background, and this is what we propose to do

here.

Similarly, single cell morphology is an emergent readout of the molecular underpinnings of
a cell’s functions and, thus, can be used as a method to define the functional state of an
individual cell. A recent study on breast cancer found that breast cancer cells showed a distinct
and heritable morphological traits associated with genomic and transcriptomic phenotypes
[21]. In addition, the local signalling networks related with cell morphology (i.e. cell protusion,
adhesion and tension) are well characterized in cancer cells [22] but further improvement in
the mechanisms of the immune tumor microenvironment’s shape and its relationship with
cancer cell evolution or responsiveness to treatment is less well elucidated. We will analyze
the impact of immune related single-cell morphology of different types of gliomas correlated
with multi-omics data (transcriptome and methylation) and how both are correlated and we

will generalize our results using public datasets like the the tumor cancer genome atlas (TCGA).

Finally, the iDISCO procedure a method to immunolabel and image large intact samples,
including adult mouse brain [§]. This method has been used to analyze the 3D morphology of
mouse brain vasculature and the relationship with different brain cells [9]. This approach has
been used in mouse brain tumors to analyze the 3D distribution of tumors cells within brain
vasculature [23]. However, this study used human glioblastoma cells that were orthotopically
grafts to obtain xenograft model, and thus, it is an immunocompromised mouse model without

the possibility to correctly analyze the immune tumor microenvironment of those tumors.

Robust representation of the shape of 3D objects is a major goal in the field of computer vision
[24], and there has been rapid progress in this domain. Supervised and unsupervised methods
of shape description have been built on large-scale labelled datasets of 3D models of everyday
objects [25, 26]. A particularly challenging setting is extending the power of convolutional
neural networks (CNNs) to learning directly on curved surfaces [24, 27]. Unlike volumetric
[28] or point-based [29] approaches, surface-based methods exploit the connectivity of the

surface representation to improve performance, and furthermore can be robust in the presence
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of non-rigid deformations, making them a strong solution for many tasks such as deformable
shape matching [30]. Furthermore, multi-object 3D tracking is a recently proposed approach to
facilitate mobile robots to perform well-informed motion planning and navigation by localizing
surrounding objects in 3D space and time, that allow to segment, classify and follow different
objects at real-time [3I]. Finally, these computer vision analytical approaches can be combined
with different “blocks” or types of data to facilitate the integration of different sources of data
[32]. However, the application of these methods for biological related areas is still limited
[33, 34]. The aim of this project is to provide a novel framework to analyze 3D and spatio-
temporal microscopy imaging data from using different models of brain tumors, considering
the shape and morphology of tumors cells in different contexts or different treatments with the
possibility to analyze the cross-talk with tumor micro-environment considering their genomic
or multi-omics relationship. These approaches could be easily transferred to other diseases or

tissues to further generalize our results.

2 Cell Tracking Challenge (CTC)

2.1 History

The main datasets used during the project in order to obtain results and study the behaviour
of the models have been obtained from the Cell Tracking Challenge [35]. Also, two of the three
datasts used for the semantic segmentation benchmark have been taken from this source. The
challenge was launched in 2012, looking for newer and more robust methods of cell segmentation
and tracking using microscopy images. In its ten years of existence, it has hold six editions.
Even more, since 2017, online submissions are available and evaluated each month, posting the

resulting ranking on their website.

Since their first edition, 2D and 3D time-lapse datasets of moving cells and nuclei were available
to download. The first edition was held in the International Symposium on Biomedical Imaging
(ISBI) [36] 2013 in San Francisco (CA, USA) and the report on the logistics, methods and
experimental results were published in Bioinformatics [37]. After the success of the first edition,
a second one was held in the ISBI 2014 in Beijing (China). As novelties, they extended the
datasets, not only with real, but also computer-generated data by a cell simulator [38]. The
third edition was held by the ISBI 2015 in Brooklyn (NY, USA), organized due to the increasing
number of participants and submissions.

After this three first editions, a description on each of them and a compilation of 21 algorithms
and 13 total datasets was published in Nature Methods in 2017 [39].

In 2018, three years after the last edition was held, they organized the fourth one, in the ISBI

2019 in Venice (Italy). Here they introduced a newer benchmark for the segmentation task and
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the dataset repository was extended by adding light-sheet microscopy and real and computer-
generated time-lapse sequences of single cells [40]. The main update introduced in the ISBI 2020,
holding the fifth edition (virtually due to sanitary conditions), was the addition of the so called
silver reference segmentation annotations. These were computer-generated annotations for nine
datasets in order to facilitate some methods. In the sixth and last edition until now, organized
by the ISBI 2021, the silver annotations for training video segmentation were extended to 13

datasets as well as new methods aiming to improve the generalizability to the rest of the datasets.

In June 2022, a report synthesized 89 algorithms used in the history of the challenge including
a repository containing 20 datasets. The outcomes of three insightful studies about the
relationship between the technical and biological performance of the benchmarked algorithms
and the dataset and annotation properties, as well as the generalizability and the reusability of

top-performing algorithms, was published in Nature Methods in 2023 [41].

2.2 Datasets

The dataset repository consists of 2D and 3D time-lapse sequences of fluorescent nuclei or cells
moving in a substrate environment, along with 2D phase contrast, and differential interference
contrast microscopy videos of cells moving on a flat substrate. As was mentioned above, in the
fifth edition of the challenge 2D and 3D videos of computer-generated fluorescent cells and
nuclei of different shapes and motion patterns were provided. Up to this day, the challenge

repository contains 20 datasets (only 13 existed in the first edition).

Both the 2D and 3D dataset structure is similar. The images are encoded in .¢f files containing
only one channel (meaning black and white images). 3D datasets are encoded as a 2D-stack,
so that there are multiple 2D images taken in different depth. In this case, all 3D datasets
contain only 5 images in the z axis where the 2D images have sizes between 250 x 250 and
1024 x 1024 pixels. It is important to say that the resolution of the 2D-stack for some depth
values is not astonishing and it makes them not optimal for certain tasks like segmentation,

but this will be discuss in a different section.

Before diving into the main sections of the project, I will briefly talk about the datasets
annotations. Each dataset, no matter if it is two or three dimensional, consist of two videos
taken in different times for training and testing sets. This way, we end up with four videos.
For segmentation and tracking, there exist the so called Gold Truth (GT) annotation. This
one is made by multiple professionals and the final annotation consist of the average. Due to
the highly cost and complication to obtain it, there are only a few frames from the videos that
are annotated. This means, that inside the training sets containing the two videos, only some

of the frames are annotated, which really is a limitation. For three dimensional datasets the
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problem intensifies, since we do not only have frames in time, but also in depth, and only one
out of the five images in the 2D-stack is annotated. In the sixth edition, Silver Truth (ST)
annotations for segmentation were added. Since these annotation were computer generated
using the methods and algorithms outputting the best results in the previous editions, they
were easily obtained. This way, the datasets containing this annotations are much completed

and all frames in the videos (and all images in the 2D-stack) are annotated.

3 Segmentation

The task of segmentation plays a fundamental role in computer vision. It consists in dividing
and classifying every pixel of the image into different classes or groups. For doing so, the
methods used in segmentation should be able, first to separate the pixels of the objects from
the background and then group them in clusters taking into account similar properties and

characteristics, like color, intensity, saturation...

It is important to differentiate between image classification and image segmentation: the former
gives information about the whole image, taking into account all the pixels and giving them a
label. The latter, first groups the pixels into different elements or objects and then performs an

image classification for each of them. Inside image segmentation one can find different kinds:

e Semantic segmentation: is the task of assigning a class label to every single pixel in an
input image. In this case, the number of labels will depend on the training performed to
the dataset and the method used for segmentation. Semantic segmentation is based on
the principle that the content of an image can be divided into several semantic classes.
These semantic classes can then be used to identify and track objects in the image. It

can be used both in Supervised as well as Unsupervised learning.

As it has been stated before, Image Classification and Image Segmentation are quite
similar. If one compares them you can see that Image Segmentation is nothing but a
classification of the pixels of the image within certain context. That is why Semantic
Segmentation started as a slight modification of image classification. The first successful
network model for image segmentation used a fully convolutional network (FCN) [44]. In
the last years, new models with larger and smaller modifications have been proposed, but
most of them run under a convolutional network like DeepLab, FastFCN, MaskRCNN or

Transformer-based models.

e Instance Segmentation: it goes further in the task than semantic segmentation. In this
case, one is not interested in grouping the pixels in different clusters based on a semantic

label, but being able to differentiate each of these objects individually.



2D and 3D Analysis of Microscopy Images

e Panoptic Segmentation: it is considered to be the most complete one. It doesn’t only
perform Instance Segmentation in the image (so identifying each individual object in the
frame) but it also groups them based on a semantic label. It is nothing more than the

mixture of Semantic and Instance Segmentation.

In Figure[I] is shown an example of the difference between these three types of image segmenta-
tion. The following subsections will cover the models used for the segmentation task, both for

semantic and instance.

v

(a) Image (b) Semantic segmentation

Person 2

" Person3

(¢) Instance segmentation (d) Panoptic segmentation

Figure 1: Comparison of different types of image segmentation.

3.1 Semantic segmentation models
3.1.1 UNet

The "UNet’ architecture was introduced in 2015 by Ronneberger et al. [43] in relation to
the ISBI challenge for medical image segmentation. By using this architecture trained on
transmitted light microscopy images, they were able to finish top first in the 2015 Cell Tracking
Challenge by a large margin.

As shown in their article, they construct the network upon the already known Fully Connected
Network [44]. The main difference is that they achieve even better results in segmentation
with fewer training data, so that it is possible to do a notable training with small datasets.
This is achieved by substituting some of the downsampling operators by upsampling ones; the
pooling operators that decrease the dimension of the image in a usual convolutional network

are replaced by an operator that does exactly the opposite; augment the dimension. Part of
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the features are cropped and combined with previous ones of the same dimension so that the
new feature has doubled its size. This way, one gets a higher resolution feature and at the end,

a better segmentation as output.

Network Architecture: I will dedicate a small section to talk about the network architecture,
as I think this neural network has has an important role during the internship and we haven’t
view during the master courses.

The network architecture is illustrated in Figure 2] At first glance one can already understand
where this network gets its name from. The left size of the "U" represents the downsampling
part (contracting path) where the features dimensions gets smaller in each layer and the right
size the upsampling one (expansive path) where the features dimension start growing again
until it ends up with a size similar to the original image.

If one focuses on the contracting path, it can see that it has the general structure of a usual
convolutional network consisting of convolutional and pooling layers. In this case, two different
3x3 convolutional layers plus a rectified linear unit (ReLU) are followed by a 2x2 pooling layer.
In particular, the number of feature channels is doubled and the size of each of them is halved
in each downsampling step. Up to this point, we are working with a slight modification of a
usual CNN.

input
image |»
tile

output
segmentation
map

=» conv 3x3, ReLU
copy and crop

§ max pool 2x2
4 up-conv 2x2
=» conv 1x1

Figure 2: U-net architecture (example for 32x32 pixels in the lowest resolution). Each blue box
corresponds to a multi-channel feature map. The number of channels is denoted on top of the
box. The x-y-size is provided at the lower left edge of the box. White boxes represent copied

feature maps. The arrows denote the different operations.

The big change introduced in [43] was the expansive path. Every step in the expansive path
consists of an upsampling of the feature map followed by a 2x2 convolution (“up-convolution”)

that halves the number of feature channels, a concatenation with the correspondingly cropped
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feature map from the contracting path, and two 3x3 convolutions, each followed by a ReLU.
The cropping is necessary due to the loss of border pixels in every convolution. At the final
layer a 1x1 convolution is used to map each 64-component feature vector to the desired number

of classes. In total the network has 23 convolutional layers.

An important detail needs to be kept in mind in order to make it work. The original input size
should be one such that the consecutive layers in the contracting path (let side) end up in and
even x- and y- size. This is due to the fact that in the expansive path (right side) the features

are going to be halved in order to be cropped and concatenated, so an odd size would not work.

The other two models used were chosen from the PyTorch pre-trained models, so one only need

to process the data to make them work but not create the model from zero.

3.1.2 FCN

The Fully Convolutional Network (FCN) was introduced in the paper [44] in 2015. FCN
stands out by its fully convolutional nature, replacing traditional fully connected layers with
convolutional layers. This design choice retains spatial information, enabling the network
to process inputs of varying sizes and produce output segmentation maps of the same size.
FCN also incorporates skip connections that link lower-level and higher-level feature maps,
effectively capturing both fine-grained and coarse information. The network further employs
transposed convolution (upsampling) layers to increase feature map resolution, aligning them
with the input image size. Multiple output heads provide multiscale predictions, improving the
model’s ability to capture details. FCN is trained with labeled datasets, leveraging pixel-wise
classification loss functions like softmax cross-entropy and optimization techniques such as
stochastic gradient descent (SGD). It has found applications in various domains, including
autonomous driving and medical image analysis.

What sets FCN apart from earlier architectures is its emphasis on spatial preservation, skip
connections, and efficiency in handling diverse input sizes. Unlike traditional convolutional
neural networks (CNNs) used for image classification, FCN maintains pixel-level information
throughout the network, making it suitable for pixel-wise tasks like semantic segmentation. Its
use of skip connections helps combine fine and coarse features, enhancing segmentation accuracy.
FCN’s adaptability to varying input sizes has made it practical for real-world applications, and
its success has inspired the development of numerous improved variants, solidifying its place as

a fundamental building block for detailed pixel-level analysis in computer vision.
Network Architecture: Starts with an input layer that takes an image of variable size.

It then employs convolutional layers to extract low-level features, followed by additional

layers that capture increasingly complex information. These intermediate layers are connected

10
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to corresponding layers in the upsampling path through skip connections, preserving high-
resolution spatial details.

In the upsampling part, transposed convolutional layers are used to increase the spatial resolu-
tion of the feature maps, aligning them with the original input size. The final convolutional layer
produces dense pixel-wise predictions for each class. These predictions are usually processed
through a softmax activation function to generate class probabilities for each pixel. FCNs are
trained on labeled datasets, optimizing pixel-wise loss functions like softmax cross-entropy. The
result is an efficient and versatile network capable of segmenting images into different classes
while preserving spatial information. More advanced FCN variants incorporate additional

features and optimizations to further improve segmentation accuracy.

Pretrained models on large-scale datasets in PyTorch typically use architectures based on
well-known backbone networks, such as VGG or ResNetin order to maximize the feature

extraction capabilities of these backbones and add decoder layers for pixel-wise predictions.

forward /inference

«

backward/learning

Figure 3: FCN example architecture.

3.1.3 DeepLab

This deep learning model was introduced in [45] in 2017. It is a highly influential model
for semantic segmentation in computer vision. What sets DeepLab apart is its effective use
of atrous convolutions (also known as dilated convolutions) and a unique combination of
multi-scale features. Atrous convolutions allow to capture spatial context at different scales
without significantly increasing computational complexity, unlike traditional CNNs. By carefully
selecting dilation rates, DeepLab can control the receptive field of the network, enabling it to
capture both fine-grained details and larger contextual information in the same layer.

Another distinguishing characteristic of DeeplLab is its use of a "Spatial Pyramid Pooling"
(SPP) module, which operates at multiple spatial scales to capture features at different levels

of granularity.

11
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This helps in handling objects of varying

sizes within the same image. Additionally, flly-connected layers (fcg, fe7)
DeepLab often incorporates skip connections Tixed-length reprosentation
. L1 ITTEE I —
from lower-level feature maps to higher-level A
ones, similar to U-Net, to further enhance ¢ 16%256-d g 256 ¢ 256-d
segmentation accuracy by combining fine and E
coarse features. M spatial pyramid pooling layer
One of the most significant advancements in feature maps of convs

(arbitrary size)

DeepLab is the integration of "atrous spa- 8 comoluion I

convolutional ayers
tial pyramid pooling" (ASPP), which extends input image

the SPP concept by applying atrous convolu-

tions at multiple scales. This ASPP module Figure 4: Network structure with a spatial pyra-

efficiently captures rich context information, | .4 pooling layer where 256 is the filter number

making DeepLab highly effective in capturing of the convs layer, and convs is the last convo-

fine object boundaries and small-scale details. |, tional layer.
Overall, DeepLab’s architecture, with its em-

phasis on atrous convolutions, multi-scale features, and ASPP, has achieved state-of-the-art
performance in semantic segmentation tasks, making it a preferred choice in applications such

as autonomous driving, medical image analysis, and scene parsing.

3.2 Instance segmentation models
3.2.1 Post processing methods

As was explained before, instance segmentation is nothing more than an extension of semantic
segmentation. In this case one doesn’t only want to classify each of the pixels of the image in a
class or label, but also be able to distinguish between instances in the same class. This cannot
be done directly using the deep learning models introduced in but one can find a way to

make them work.

During this section we will focus on two-classes segmentation, since it is the task that we
will be dealing with, but a similar argument could be used with a multiclass problem. Let’s
suppose we have a model for semantic segmentation e.g. UNet architecture, already trained
and working for our cell images. In this case all cells belong to the same kind (that is why it is
a two-class segmentation problem). Without changing the model, one can try to post-process
the outputs of the semantic segmentation model (so one binary mask per image) to extract the
different features. Before going any deeper into the details, it is relevant to highlight the fact
that this is not an easy task and it takes advantage of machine learning algorithms rather than

deep learning models. The first important aspect would be to deeply analyse the dataset one

12
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is working with and extract different features that could be helpful to detect the cells. It won’t
be the same detecting stem cells which are more rounded and well-delimited than neuron cells,
that have not only the nuclei but long and fine extensions. Some of these features could be the
shape, size, area of pixels that they fill, color gradient in the borders, perimeter...Of course, the

less classes one has and the clearer the background is, the easiest it will be to detect the instances.

Once the primary features have been selected, one needs to be able to apply them to the images.
This can be done using several python modules as "Sklmage" which has plenty of different
algorithms to find patterns and aspects in the images. In our case, the datasets from the CTC

had really clear images with a flat background which helped a lot in the process.

3.2.2 Mask R-CNN

Mask R-CNN was developed by the Facebook AI Research Team [46]. This network is an
extension of "Fast R-CNN" [47] which could only identify detection boxes on the objects but
not segmentation perse. It is a region-based network using deep convolutional networks. At the
moment is was a good improvement in object detection models with respect to the accuracy

and training and testing speed.

Network Architecture: As was explained before, "Mask R-CNN" runs overs "Fast R-CNN",
so the network architecture is the same except the new branch added to "Mask R-CNN" for the
segmentation task. During training the network need both the images and targets, which are
nothing more than the masks. In the case of "Fast R-CNN" the targets consist of the bounding
boxes. The network can be divided into two blocks: the convolutional backbone and the network
head. The first one is composed of convolutional and pooling layers in order to perform feature
extraction over the image. The network head consists on the concatenation of the branch
from "Fast R-CNN" for bounding box detection and a third branch added specifically for mask

prediction, allowing instance segmentation. An example of this architecture is shown in Figure

Bl

3.2.3 DiffusionNet

Both "UNet" and "Mask R-CNN" work with 2D images, so in case one wants to apply them
to three-dimensional data, changes should be made. This last neural network that is presented
is called "DiffusionNet" [48] and is the only one that operates directly in 3D data, both
point-cloud or meshes. DiffusionNet is based on the idea of using spatial diffusion as the main
network operation. This means that the network learns to propagate information across the
surface of a shape, rather than just between neighboring points. This makes DiffusionNet more

robust to discretization artifacts, and allows it to learn more complex relationships between

13
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the features of a shape.

Figure 5: Mask R-CNN architecture example. The first part is the architecture of Fast R-CNN

and then a branch containing two convolutional layers is added for the mask prediction.

Even though it is still a relatively new architecture, it has the potential to revolutionize the way
we learn on surfaces. It is more robust to discretization artifacts than previous methods, and it
can learn more complex relationships between the features of a shape. This makes DiffusionNet

a powerful tool for a variety of tasks in computer graphics, computer vision, and robotics.

Network Architecture: in Figure [6]is shown a scheme of the architecture of DiffusionNet.
As one can see, it is composed of several DiffusionNet blocks. Each of this constructing blocks
is the result of combining the three main building blocks of the model: multi-layer perceptrons
(MLPs) applied at each point to model pointwise scalar functions of feature channels, a learned
diffusion operation for propagating information across the domain, and local spatial gradient

features to expand the network’s filter space beyond radiallly-symmetric filters.

DiffusionNet block Computing diffusion h(u)
scalars addition implicit timestep h;(u) := (M + tL) 'Mu
per-vertex /_P > or
|_ ]/ fast spectral solve oot
- precompute _ R + _ he(u) == ® et o (lI>TMu)
i Laplace & LM \‘ spatial , -precompute. .
:mass matrix 7 diffusion spatial concat | S—r i |
i spatial : he(u) gradient features pe3r—vertex MLP NN\ _
I gradient G | e 2, « Gu [3N,N,N,N] AV VAVAVAR IR S $o 1
! matrix | tanh(Re(z, © Az,)) learned weights 1 = | I
o ; ‘ per-channel i Lpi=AMg¢;
I eigenbasis A,¢ learned A width: N \  eigenbasis
\ _ (optional) ’ VU -
DiffusionNet

input DiffusionNet —— DiffusionNet —— DiffusionNet —— DiffusionNet output
u — Ajpu block block block block U — Aoutt

Figure 6: DiffusionNet architecture. It is composed of successive identical DiffusionNet blocks.
Each block diffuses every feature for a learned time scale, forms spatial gradient features, and

applies a spatially shared pointwise MLP at each vertex in a mesh/point cloud/etc.
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4 Tracking

Object tracking is a computer vision task that aims at detecting and following the movement
of an object in a sequence of images or video frames. The goal of object tracking is to
maintain a consistent association between the object and its representation across different
frames, despite changes in position, scale, orientation, and appearance. Is is a challenging
problem and its difficulty depends in great measure on the dataset used. Some problems that
one may encountered when performing object tracking are: changing the appearance of the
object due to lighting or deformation, occlusion of other objects since the view can be blocked,

scale changes depending on the zooming of the camera, blur in the picture due to the movement...

To perform object tracking in a sequence of video frames, one can think of two possible
approaches: using machine learning algorithms or deep learning models. Each has its strengths
and weaknesses. Depending on the dataset that one is using and the type of tracking that
he wants to perform, a different approach should be recommended. Also, the accuracy and

deepness of object tracking should be considered.

4.1 Machine Learning Algorithms

Machine Learning learn from data using statistical methods as well as algorithms trained to
make classifications or predictions. This way, it works with algorithms and mathematical
methods that can be precisely described and studied, giving the user a better understand-
ing of what is going on under the computer. When data is clearly organized with a fixed

structure, machine learning algorithms are widely suggested as they can give astonishing results.

With respect to this project, we want to focus on machine learning algorithms applied to object
tracking. Due to the order followed in the project, object tracking was proposed after object
segmentation, or more precisely, it was thought to be done after the segmentation task. That is
why we could think of ways of performing tracking with the masks of the real images (since we
could obtain the mask of any video frame by applying the trained segmentation model first).
Since I didn’t do any tracking course or project during the master, we thought it could be a
good first approach to try to mimic and understand how these machine learning algorithms
work. This way, we didn’t focused on one specifically but rather tried to create one by just

understanding the problem we were solving and the data we had.

In this case we were dealing with a set of frame video images (with fixed order) and its respective
masks. Just to be clear, this masks are of the same size of the original images but consist
of multi-label, in other words, the background pixels correspond to zero and the rest to the

objects detected in the image. Pixels of the same object have the same label (1, 2, 3, ...) and
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the maximum label corresponds to the total number of objects in the image. The problem is
that when segmentation in done, the labels are assigned arbitrarily in order of detection of the
instances, so that one object can have a different label in successive frames. With this data,
the goal is to assign or propagate the label of the objects to the consecutive frames, so that

each object has the same label during the whole video.

To solve this first task, we though on assign to each object in a frame the label of the object
in the previous frame such that the Intersection over Union (IOU) [49] evaluation metric was
the highest. In Appendix [7]is added an explanation of the different metrics used for theses

algorithms as well as during the training process for segmentation.

This was done by creating a function that calculated the IOU between two binary masks (so
only background and one object per mask). The second auxiliary function took as entries
two consecutive frames and for every object in the two masks, performed the IOU using the
previous function. As output it assigns to each object in the current frame the label of the
object in the previous one that had the best correspondence. With these two functions, we
could create a main loop that iterates through every frame and propagated the labels from one

frame to the next.

This first step corresponds to a very simple tracking algorithm and could work relatively fine
in some cases. But as it was said before, the result of an algorithm depends a lot on the
dataset used, and one should understand the behaviour of the data in order to create a better
algorithm. In this case, the datasets we were using had some characteristics that required more

complex algorithms in order to obtain good results. Some of this features are:

e Cells entering and exiting: from one frame to the other, some of the cells could disappear

from the frame as well as some new cells could enter our observation area.

e Mitosis: whenever cells are reproducing, the end up dividing themselves into two smaller

cells. In global, for each cell divided one ends up with one more cell in the frame.

e Cells merging: even though the cells do not merge to create a new one, they may get
close enough that they touch, so that when object segmentation is performed, they are

considered as one.

All these aspects should be considered if one wants to create a decent algorithm. A way to
include these features into the algorithm is similar to what was done before with the IOU.
First, one has to consider the feature that he thinks may make a difference and then create
a lost functions associated to this feature. For example, in addition to IOU on could take

the centroid of each object detected and compare the distance between centroids from one
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frame to the next one or the area of each object (although this would not work in the case
of cells that move too quickly or change abruptly its morphology). And this can be done

for pretty much every feature, as long as one finds a way to quantize the changed between frames.

It is clear that object tracking is not an easy task and for complex datasets, the creation of a
decent algorithm can be really challenging. For this reason deep learning algorithms for object

tracking can be really handy.

4.2 Deep Learning Algorithms

As was just explained, machine learning algorithms do have its use in object tracking, but one
should know how and when to use them, and be aware of its limits. In order to deal with those
limitations due to data complexity, deep learning algorithms can be of more interest in this
subject. The main reason is that they are able to extract more complex features and relations

between objects and frames.

For example, using a Convolutional Neural Network (CNN) one can not only detect and segment
the cells but also extract features about their morphology, location, movement, migration,
transformation...in order to relate ones with others. There are also some methods that use a
specific type or neural network that tries to predict the movement of the detected objects and
compare them with the next frame. This methods are much more complex than the previous
algorithms and that is why they are able to give better results, above all when the data in

relatively complex. Nevertheless, the computational costs can be severely increased.

In the last years, Graph Neural Networks (GNN) have proved to be very powerful and effective
for a variety of tasks, and they are becoming increasingly popular in a variety of fields, such as
natural language processing, computer vision, and biology. As its name says, these are a type
of neural network that can be use when the data is organized or structured in the form of a
graph. In that case, GNN update the graph by propagating messages (information) between
the nodes. The real question here is how can we turn our data consisting of images (or masks)
of cells into a graph. At a first glance, we can just imagine that the detected objects in the
frame are the nodes of the graph and the edges, the relation between each of them. Those

relations, associations or features are the ones extracted by the GNN.

One of the methods that obtained a better result in the tracking task in the Cell Tracking
Challenge is presented in [50]. They decided to use a GNN, as many other people may have,
but what makes it work better than others is the core of the GNN: the way the nodes features

and edges associations are updated in each layer.
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Figure 7: General representation of the architecture of the GNN presented by [50]. (a) The
input is composed of a live cell microscopy sequence of length T and the corresponding sequence
of label maps. (b) Each cell instance in the sequence is represented by a feature vector which
includes DML and spatio-temporal features. (c¢) The entire microscopy sequence is encoded as
a direct graph where the cell instances are represented by its nodes and their associations are
represented by the graph edges. Each node and edge in the graph has its own embedded feature
vector. (d) These feature vectors are encoded and updated using Graph Neural Network (GNN).
The GNN (which is illustrated in Fig. 2(a)) is composed of L message passing blocks which
enable an update of edge and node features by their L-th order neighbors (i.e., cell instances
which are up to L frames apart). (e) The GNN’s edge feature output is the input for an edge
classifier network which classifies the edges into active (solid lines) and non-active (dashed lines).
During training, the predicted classification Y is compared to the GT classification Y for the
loss computation. Since all the framework components are connected in an end-to-end manner
the loss backpropogates throughout the entire network. (f) At inference time, cell tracks are

constructed by concatenating sequences of active edges that connect cells in consecutive frames.

5 Experiments

5.1 Semantic segmentation

As was introduced before, the segmentation experiments will be divided in two: those containing
the results of semantic segmentation and the ones focusing on instance segmentation. For
semantic segmentation three models have been chosen: UNet, FCN and DeepLab. All of
them have been already introduced and a deeper insight about them can be found in the
Appendix. The UNet model consists of a basic architecture trained from random initialized
weights whereas the FCN and DeepLab models have been taken form the PyTorch module with
pretrained weights. For the datasets we have used three different ones: 'Fluo-N2DH-GOWT1’,
"Fluo-C2DL-MSC’ and "Warwick QU’. The first two are available in the CTC. The last one is
probably the most challenging one due to its different nature. In Table [1| one can find three
subtables, each of them containing the results of the models being applied to a particular
dataset, going from the least to the most challenging. For each model, it has been chosen the
epoch where the validation loss is the lowest. In general, it also corresponds to the highest

accuracy metric results, although this may vary a bit.
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Models Epoch Train loss Val loss  Dice IoU
Fluo-N2DH-GOWT1
DeepLab 95 0.0065 0.0077  0.9774 0.9558
FCN 100 0.0168 0.0204 0.9390 0.8851
UNet 98 0.0091 0.0087  0.9780 0.9570
UNet not 94 0.0087 0.0074  0.9772 0.9555
Fluo-C2DL-MSC
DeepLab 80 0.0158 0.0293  0.8919 0.8049

FCN 92 0.0225 0.0360 0.8558 0.7479
UNet 97 0.0354 0.0335 0.8891 0.8003
UNet not 92 0.0340 0.0455 0.8580 0.7513
Warwick QU
DeepLab 15 0.0954 0.2349 0.8929 0.8066
FCN 19 0.0975 0.1892  0.9129 0.8397
UNet 95 0.2898 0.2389  0.8802 0.7860
UNet not 91 0.2955 0.2398 0.8863 0.7958

Table 1: Quantitative evaluation on three 2D datasets for semantics segmentation. For each
dataset, we compare results of multiple baselines (rows). For each model is shown in what
epoch it obtains the best results (with respect to the minimum validation loss achieved). Best

result for each dataset are indicated in bold.

Taking a look at the table one can see that in the first two datasets, the results from each
of the models is quite similar. The number of epochs needed to achieved the best results are
close to the end of the experiment and the best metrics for Dice and IoU coefficients are in the
same range. DeepLab seems to output the best general results while the pretrained model from
FCN is behind the basic UNet architecture, with and without normalizing the inputs. In the
last dataset the results differ . The validation loss in all the models is quite behind the values
obtained in the other datasets and in this case, is the FCN model the one with the best results.
As a general overview, the results from the UNet model with and without normalizing the input
values are almost the same, so it makes small difference. Also, the first dataset achieves high
Dice and IoU values, above 0.95 in most cases. This is due to the fact that the dataset is really
homogeneous and the images are all taken in the same way. More about this characteristics
can be found in the Appendix. In Figures [9] and are represented the losses and metrics
of all the experiments in Table [1| over 100 epochs and it can be noted that the first dataset
outputs really smooth results, as the training and validation losses decrease in the same manner

independently of the model. In the other hand, analysing the last dataset one can sees that the
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pretrained models stop learning quite fast, in the first 20-30 epochs or so, whereas the UNet
architecture (independently of normalized or not inputs) is still learning even at the end of the

first 100 epochs. This is clearly visible in the training loss curve.

Finally, in Figure [§] are represented the original test images along with the mask predicted by
the UNet model without normalizing the values. On can sees that this basic model is able
to detect most cells but it has problems filling the holes in them and ignoring small contrast
values that don’t correspond to any instance. It is in the Fluo-C2DL-MSC dataset that this

errors are more clearly visible, as the shape and size of the cells vary more than the others.

Original Image Predicted Mask Image + Mask

(a) Fluo-N2DH-GOWT1

Original Image Predicted Mask Image + Mask

Y

(b) Fluo-C2DL-MSC

Predicted Mask

(¢) Warwick QU

Figure 8: Example of the original image, the predicted mask and their overlap for the UNet

architecture in the three datasets used for semantics segmentation.
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Losses for Fluo-N2DH-GOWT1 Dataset
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Figure 9: Comparison of training and validation losses for the 'Fluo-N2DH-GOWT1’, "Fluo-
C2DL-MSC’ and "Warwick QU’ datasets in semantic segmentation experiments. All models

have been run over 100 epochs with a learning rate of 0.001.
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Metric accuracies for Fluo-N2DH-GOWT1 Dataset

Dice loU
097801 — 0.9570 1 —
0.8694 - Fj’v"_f 0.8507 A Fﬁo*_
0.7607 1 0.7443 4
0.6520 1 0.6380 1
0.5433 1 0.5317 1
0.4347 4 0.4253 4
0.3260 1 0.3190 1
0.2173 4 DeeplLab 0.2127 - DeepLab
—— FCN — FCN
0.1087 4 —— UNet norm 0.1063 4 —— UNet norm
0.0000 4 —— UNet not norm 0.0000 4 —— UNet not norm
0 20 40 60 80 100 0 20 40 60 80 100
Epochs Epochs
_ Metric accuracies for Fluo-C2DL-MSC Dataset
Dice loU
0.8937 4 0.8078 1
0.7944 4 0.7180 4
0.6951 1 0.6283 1
0.5958 4 0.5385 4
0.4965 1 0.4488 1
0.3972 4 0.3590 4
0.2979 1 0.2693 1
0.1986 DeeplLab 0.1795 - DeepLab
—— FCN — FCN
0.0993 4 —— UNet norm 0.0898 - —— UNet norm
0.0000 4 —— UNet not norm 0.0000 4 —— UNet not norm
0 20 40 60 80 100 0 20 40 60 80 100
Epochs Epochs
~ Metric accuracies for Warwick QU Dataset
Dice loU
0.9185 1 0.8493 4
0.8482 1 0.7735 4
0.7780 1 0.6977 1
0.7077 4 0.6218 4
0.6374 1 0.5460 1
0.5672 1 0.4702 4
0.4969 1 0.3944 1
0.4266 - — Deeplab 0.3186 - — Deeplab
—— FCN —— FCN
0.3563 —— UNet norm 0.2427 1 —— UNet norm
0.2861 1 —— UNet not norm 0.1669 —— UNet not norm
0 20 40 60 80 100 0 20 40 60 80 100
Epochs Epochs

Figure 10: Comparison of Dice and IoU metrics for the 'Fluo-N2DH-GOWT1’, ’Fluo-C2DL-

MSC’ and "Warwick QU’ datasets in semantic segmentation experiments. All models have

been run over 100 epochs with a learning rate of 0.001.
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5.2 Instance segmentation

For the experiments during the internship, the semantic segmentation task was the one where
we devoted more time, as it settles the bases for the rest of the work. In this case only Mask
R-CNN architecture was well implemented in order to get comparison results. CTC datasets
were also used for the purpose since most of them already had instance segmentation task which
is not easy to obtain. By default Mask R-CNN model is prepared to be used with 3 channel
images (colored images) which doesn’t correspond to the CTC datasets. One of the easiest ways
to deal with this kind of technical problems is to convert 1 channel images to 3 channels by just
copying the unique grayscale channel 3 times. This is an easy approach although it may be not
the best one in all cases, as it requires 3 times more memory per image without increasing
the useful information. Nevertheless, in this case it was preferred this approach in contrast to
changing the network architecture to make it compatible with 1 channel images. In Table 2| one
can find the same metric values as the ones shown for the semantic segmentation experiments.
In this case the comparison is done for one unique model and different datasets (in contrast
with semantic segmentation): 'Fluo-N2DH-GOWT1’ and "Fluo-C2DL-MSC’. Since the second
one has different shape values for the images corresponding to the first and second videos
sequences (see Appendix [7] for more details) and to avoid confrontations with the model, it
was decided to train them as different datasets, named with the extension '0T” with 7" = {1, 2}

indicating the video sequence.

Datasets Epoch Train loss Val loss  Dice IoU
MaskRCNN

Fluo-N2DH-GOWT1 88 0.0713 0.1173  0.8554 0.7473

Fluo-C2DL-MSC-01 29 0.1686 0.4343  0.3327 0.1995

Fluo-C2DL-MSC-02 92 0.0993 0.2836  0.4936 0.3276

Table 2: Quantitative evaluation on three 2D datasets for instance segmentation. Results are
shown for MaskRCNN model giving the epoch at which it obtains the best results (with respect

to the minimum validation loss achieved). Best result for each dataset are indicated in bold.

Although the training loss may look similar in all cases, one can see a big difference in the
validation loss and the metric accuracy values. Clearly, the 'Fluo-N2DH-GOWT1’ dataset
outputs the best results, achieving a validation loss twice as low as the second dataset in
the list. With respect to the accuracy values, the differences are even greater. What is
more shocking is the fact that for the same dataset corresponding to different video sequence
("Fluo-C2DL-MSC-01’ and "Fluo-C2DL-MSC-02’), the metric accuracies are quite different.
This can be seen with more clarity in Figure [L1| where is shown the comparison of the 4 columns
of Table [2] over the first 100 epochs. One can see that the 'Fluo-N2DH-GOWT1’ has a really

good training curve, giving smooth results for the validation loss and the metric coefficients.
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In contrast, although the general beaviour of the other dataset is similar, the values it achieves

are much worse and less smooth, having a not ignorable error.

Losses for MaskRCNN Model
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Figure 11: Comparison of training and validation losses in the first row and Dice and IoU
metric coefficients in the second one using Mask-RCNN model and 3 different 2D datasets
from the CTC. All models have been run over 100 epochs with a learning rate of 0.005

About technical details, it is important to note that instance segmentation should normally
output worse results than the semantic task using the same model. This is clearly visible is
one compares the curves in Figure 1] to those in Figures [9] and [I0] For each of the datasets,
the losses and accuracies achieved in the segmentation task are much better. Without going
too deep, one can see that the best dice and IoU coefficient obtained in the instance task for
the second dataset is the value at which the other models start their training. This gives us a
perspective of how hard the simple task of identifying instances once you know to segment
can get. The explanation of this change of behaviour between models models is obvious, as
instance segmentation models must do the same semantic segmentation with the complexity of

also being able to identify individual objects. In this case this comparison cannot be shown
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due to the lack of time to compute all the experiments. Nevertheless, by looking at the masks
output by the trained model, one can see that although the segmentation is quite similar to
that of the previous models used in section [5.1} individual instances are not clearly identified,
and some of the cells appear to be merged as a unique one in the case that they are touching.
In Figure are shown an original image along with the prediction output by the trained
Mask-RCNN model for each of the datasets. One can see once again that the mask output for
the first dataset is quite good, while the ones for the other datasets lack some precision. This
is the same behaviour than the one obtained in the semantic task, although here it is easier
to see. This may be due to the fact that the first dataset has smoother values and constant
shapes for the cells, having a good separation between them in most cases. In the other hand,
the 'Fluo-C3DL-MSC’ dataset has brighter values in the core of the cells, with variable shpaes
adn overlapping instances in some frames, what makes the segmentation and detection task

more difficult to the model.

Predicted Mask

) Fluo-N2DH-GOWT1

Predicted Mask

Original Image Image + Mask

Original Image Image + Mask

) Fluo-C2DL-MSC-01

Predicted Mask Image + Mask

Original Image

) Fluo-C2DL-MSC-02

Figure 12: Example of the original image, the predicted mask and their overlap for the Mask-

RCNN architecture in the three datasets used for instance segmentation.

25



2D and 3D Analysis of Microscopy Images

6 Limitations and Impacts

In this last section, I will do a reflection on the work, its limitations due to lack of data, noise,
weak models, as well as the impacts this path of investigation can lead to.

In the first place, if I had to point out the biggest problem we encountered when doing the
project and that limited us the most, it wouldn’t be the models or the mathematics under them,
but the datasets. About them, I could list plenty of different characteristics that, in this kind of
projects, lead to complex problems and not astonishing results. Whenever working on a Deep
Learning project, it doesn’t matter if it’s about Natural Language Processing (NLP), object de-
tection, instance segmentation, image classification, etc., one already knows that you will need a
lot of data for training, since the more and various data you have, the better and more complex
features the model will learn. If you want to create a model to distinguish between dogs and cats,
you may be good with a hundred images, but if the classification is oriented to object detection
for an autonomous car, for example, then you will need images of persons, children, traffic lights,
cars, bikes, skates, dogs, roads, crosswalks... and taken from different angles, perspectives,
and coloration. This makes the number of images needed increase exponentially. Not to for-

get that each of them (or most of them) should be paired with a mask that has to be hand-made.

Even with these inconveniences, computer vision applied to autonomous cars or face recognition
has the advantage that the data needed is quite common in society and, even more, is accessible
and easy to produce. Not to mention that you yourself could take a camera and take your
own pictures for a project. This is a great advantage that doesn’t apply to the medical field.
One of the problems is the difficulty in obtaining the data, since they come from living beings,
even humans, which makes the process slow. Also, it is not as easy as taking pictures in the
street or portraits of people, but images taken from a microscope. Even more, if you want
your images to be of high quality, the process is more complex. Following this point, the

data is really heavy: for being of high quality, like Whole Slide Imaging (WSI) or for being in 3D.

Another problem one can encounter is that making a general model that is able to classify or
segment different cells is quite complicated for the points treated before. Having high-quality
data of one type of cells is costly, but having enough of different types for training a general
model is even more. This happened to us in our project, since we found some open databases
of different cells, but each of them was really different from the others, or there weren’t enough
images of each, or the masks were not great. Linked to this point, making masks is a hard task
since one has to make them themselves and it’s not so clear how to do so. Images of cells do not
have precise borders or differences between the background and the cells. Usually, for taking
the images, one has to treat the cells with some type of marker in order to make them visible

or have a bigger contrast with others. The problem is that these substances usually affect more
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the nucleus or the cytoplasm of the cells, so you end up with a bright center and blurry contours.

Once the limitations due to the data used in the medical field have been discussed, I will talk
about the impact these kinds of projects or investigations may have in society. This I will
divide into direct impacts on society and environmental impact. Focusing on the first part, it
is clear that Computer Science (in general, like Machine and Deep Learning algorithms and
methods) applied to medical subjects do have a good purpose. The single goal in these cases is
to obtain better methods and utilities that can help our health. In relation to our project, the
applications in the field are various. Cells segmentation and tracking are spread throughout
medical imaging. This is due to the fact that cell migration is really important to take care of
diseases or illnesses since scientists can see how the cells (in this case, tumors) are affected
when using one or another treatment and how they react. Also, cell relations and interactions
with each other and their environment can help detect mutations and know more about the

tumors.

Lastly, I will briefly talk about the environmental impact this or similar projects may have. In
general, deep learning projects like image analysis or NLP models are quite known for the high
computational resources they need. Especially large deep learning models require significant
power to train and run the models, so the energy consumption cannot be ignored. If, instead
of using a local machine for the runs, the project is based in a data center of operation, this
cost may be higher due to the fact that energy is also needed to keep the facilities working, the
use of powerful utilities like GPUs, or the energy necessary to maintain the servers and cooling
systems at a low temperature. This energy, although primarily electricity, may come from
fossil fuels, which increase the carbon footprint. Another important point is the fact that the
intensive use of high technological equipment needed for the tasks and its rapid development
may decrease their life and increase the obsolescence time of the hardware. This is why it
should be carefully treated and managed to ensure it is recycled. Last but not least, one
of the biggest wastes of energy I think one can find in these large models is the inefficiency
of algorithms. Once one is working with powerful equipment, it tends to think less about
the efficiency and time-consuming runs and executes the same algorithm multiple times, just
making some changes in the hyperparameters and using more epochs than needed. In fact,
this is something that occurred to me the first times I worked with better machinery, and after
a few weeks, I realized that I stopped thinking about better ways to improve and apply my
algorithms and started executing the programs multiple times, just making some changes in
the hyperparameters and using more epochs than needed. In fact, this is something that I find
should be done at the end of each project: whenever you think it is as efficient as you can
make it, you can try and start fine-tuning it to give it that little push it needs to give the best

results.
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7 Conclusion

This document summarizes all that has been done during the 5-month internship at the Paris
Brain Institute. Since the beginning, most things I have done were new to me, since I was
not formally trained in computer vision. This way, I have learned technical aspects about
image representation in NumPy arrays and Torch tensors, as well as the different data types.
But most importantly, I had the opportunity to work with various deep learning models and
architectures, mostly for image segmentation. This has helped me gain confidence and be able
to adapt each of the datasets with its own characteristics to the architectures of the models.
This is probably the hardest part when doing a deep learning project, since the modifications
for the training process and the calculation of losses and accuracies are negligible in most cases
once you are able to read the dataset with the model. For this, it is necessary to spend enough
time debugging and studying the dataset you are given, including the different shapes and
aspect ratios of the images, color tonalities, and the range of values. Afterward, one should
study the model architecture that is going to be used and see what inputs and outputs it needs
in order to create a dataset that responds well to it. In particular, for this project, the hardest
model to use has been Mask-RCNN;, since it requires not only the images and masks but also

bounding boxes for detection and the mask of each individual instance.

Regarding the results obtained in the experiments, one can learn that image segmentation
is a challenging problem with long and resource-intensive training processes, which depend
mostly on the data one is using. The difference it makes when using one dataset over an-
other can be significant, as shown in the learning curves. In particular for this project, when
working with cell segmentation, the complexity of the task will depend a lot on the mark-
ings used to photograph the cells as well as the type of cells. Brain cells and, in particular,
gliomas are known for having long and thin ramifications extending from the nuclei, which
makes segmentation harder. Additionally, these ramifications are used to connect and interact
with other cells. For this reason, the task of instance segmentation becomes more complex,

as the model has to learn to separate axons from different cells or merged cells from one another.

Lastly, there are many aspects that were intended to be added to the internship, but in the end,
it was not possible due to the lack of time and probably due to being too ambitious in the goals
(which is not bad at all). The task of segmentation, both semantic and instance, took more
of our time than we thought, and that is why the tracking and analysis of 3D images could
not be finished. A lot of work has already been done but not enough to provide comparative
results, which is why we decided not to include it in the results section, although an appendix

has been added for this purpose.
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Appendix A: experiments

The code with all the experiments and functions related for the semantic and instance segmen-
tation is available at https://github.com/lucas-rdlr/segmentation-and-tracking. Note-
books and functions for tracking and 3D analysis are also available in the same link although, as
commented earlier, they are not finished and any experiment have been done concerning those
aspects. All the experiments have been tested in the same local machine with a GPU NVIDIA
Corporation TU104GLM [Quadro RTX 5000 Mobile / Max-Q)]. In particular, all experiments
for semantic segmentation have been done using the Cross Entropy Loss and the Stochastic
Gradient Descent optimizer from PyTorch with constant parameters: learning rate = 0.005,
momentum = 0.95 and weight decay = 0.0001. No transformations have been done to the
data except those experiments with normalized data (explicitly indicated) and the resize of
the images for two reasons: in case of using the UNet architecture, as it was already said in
Section the height and width of the images must be divisible by 16 (or other factor in
case the architecture is modified) in order to be able to crop and paste the arrays from the
downsampling path to the upsampling one. Even though other model is used, the images
from certain datasets must be resized in order to feed the dataloader with a fixed data shape.
"Fluo-C2DK-MSC’ and "Warwick QU’ datasets have images of different sizes and all batches in
a dataloader must be the same size. Also, there are some cases where the images have equal
size and the model doesn’t require an specific shape (like UNet) must resize it chosen to reduce
the memory usage. In Table (3] are recompiled total run time over 100 epochs and the GPU

memory of the models for the different datasets.

Models  Time (m) Memory (MB)  Params Shape
Fluo-N2DH-GOWT1
DeepLab 170 5488.87 45,773,252 (1,640,640)
FCN 140 5522.32 54,208,327  (1,640,640)
UNet 145 92043.26 28,953,474 (1,640,640)
Fluo-C2DL-MSC
DeepLab 68 4160.30 45,773,252 (1,480,640)
FCN 60 4193.52 54,208,327  (1,480,640)
UNet 87 1560.06 28,953,474  (1,480,640)
Warwick QU
DeepLab 32 92511.00 45,779,524 (3,346,512)
FCN 26 2543.93 54,304,599  (3,346,512)
UNet 80 1056.64 28,054,626  (3,368,544)

Table 3: Comparison of run time and memory usage for the semantic segmentation experiments

over 100 epochs.
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Appendix B: datasets

¢ Fluo-N2DH-GOWT1: the dataset consists of mouse stem cells images. It has two
video sequences of 92 frames each of them taken with an elapse of 5 minutes between
frames and a resolution of 0.240 x 0.240 microns per pixel. The images have 1 unique
channel (grayscale images) kept in .tif files of 1024 x 1024 pixels for both video sequences
encoded in wintl6 values.
The masks are also .tif files (of the same dimension respectively) consisting of instance
segmentation masks. In this case all the different instances masks are kept in the same
image and each instance is represented with a different value. In case one want to perform
semantic segmentation with this dataset (as is our case) one can just convert it to a

unique binary mask by taking boolean values (0 for background and 1 for instances).

This is the most homogeneous dataset we have work with and so the one that has output
the best results for all models. This is due to the fact that the cells in them have a
rounded and quite detectable size and the background in completely flat, which makes
it easy to isolate the instances, even using only watershed or threshold methods. Also,
since the dataset actually corresponds to a video sequence, all images are very similar

which makes it easier for the models to get trained.

Instance Mask Semantic Mask

Original Image

Figure 13: Example of a frame for the Fluo-N2DH-GOW'T1 showing the original frame with

its associated instance mask as well as the semantic mask.

e Fluo-C2DK-MSC: the dataset consists of rat mesenchymal stem cells images. It has
two video sequences of 48 frames each of them taken with an elapse of 20 minutes between
frames and a resolution of 0.3977 x 0.3977 microns per pixel. As the previous CTC
dataset, the images have 1 channel kept in .tif files of 832 x 992 pixels for the first video
and 782 x 1200 pixels for the second one, encoded in wint16 values.

The same characteristics as described before apply for the masks.

In this case, although the dataset comes also from the CTC, the images are harder to
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segment. They also correspond to a video sequence but the main problem may come
from the fact that the cells themselves have more different shapes between them: ones
are more elongate than others that may appear more rounded. This discrepancy between
the instances and the fact that they are more blurred with the background makes the

training process harder than the first dataset.

Instance Mask Semantic Mask

Original Image

Figure 14: Example of a frame for the Fluo-C2DK-MSC showing the original frame with its

associated instance mask as well as the semantic mask.

e Warwick QU: the data has been taken from the Gland Segmentation Challenge consisting
of a variety of histologic images of glands in a colorectal cancer. The images are taken using
the Hematoxylin and Eosin (H&E) stain technique widely used in the field of pathology
and biology. It is commonly used to stain tissue samples for microscopic examination
and provides detailed information about the cellular structure and composition of tissues.
The dataset contains 85 training images and 80 for test. The resolution is of 0.62005 x
0.62005 microns per pixel with a non-fixed size for the input images. Most of them (79 in
the case of training images) have a size of 522 x 775 pixels, being those the biggest ones.
This dataset doesn’t correspond to a video sequence, which means that each image is not
as similar to the others as with the previous datasets. Also the sizes of the images vary
more and they are not all taken in the same way, which added to the fact that here we

don’t work with a flat background makes the learning process quite harder.

Instance Mask Semantic Mask

Original Image

Figure 15: Example taken from the Warwick QU dataset showing the original frame with its

associated instance mask as well as the semantic mask.
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Appendix C: metrics

e Jaccard Index or Intersection over Union (IoU): it is a metric used to evaluate the
accuracy of object detection and image segmentation tasks. It measures the degree of
overlap between two sets, often used to compare the predicted bounding boxes or regions
with the ground truth or the actual objects or regions of interest in an image. In Figure
(a) is represented the way this metric is calculated. The values are in the range 0-1,
so it can be thought as the probability of the two objects to be the same. As one can see,
the greater the IoU is, the more intersection the two objects have so the probability is

higher.

ANB

IOU:AUB

e Dice coefficient: this metric is used in the same way as the IoU explained above. They
differ in the way that for IoU one divides by the union of the two instances whereas in
the dice coefficient one divides by the total area (so the intersection area in counted twice
as one can sees in Figure [16] (b)). Also, the intersection or area of overlap is counted
twice in the numerator. Although it may seem like they should be the same, there exists

an inequality showing that the Dice coefficient is always greater than the IoU.

Ground truth box -
predicted

Intersection

2x

Detected box

Ground truth box

Detected box

(a) (b)

Figure 16: Diagrammatic representation of the formula to calculate the IoU (left) and the Dice
coefficient (right). In both cases, higher intersection between objects corresponds to higher

metric values.
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Appendix D: future work

As was introduced in the conclusions of the project, not all goals that were set at the beginning
have ended up seeing light. It is easy to make the error of being too ambitious, specially
in research project were the speed at which one progresses is not at all homogeneous and
it is easy to encounter problems or barriers that one didn’t consider at first. In this case,
our final goal was to be able to use deep learning models for tracking of 3D cell images. It
is clear that if that is your only and ultimate goal, you can just look for good 2D or 3D
instance segmentation masks and try to find the best model. Nevertheless, our purpose was
to come up with comparison methods for our own data taken in the laboratory. In this case
we only had the raw images and the masks for training had to be done by hand. Since this
takes time, we thought that the best way to approach the project would be to start from the
bottom. The most obvious route guide to follow and the one that we chose was to start doing
the equivalent task using 2D data and then extend the results to the 3D problem. Before
doing instance segmentation, we focused on semantic segmentation as it can help identify
barriers or limitations in your data that could be helpful for the next step. We derived too
much time in these two steps, and that is why the tracking and 3D analysis couldn’t be
finished at time. This is not something that bothered us since this project will be contin-

ued as a PhD thesis, and it is preferable to take smart and sensible steps before going any further.

In this appendix will be exposed the advances that had been done related to the tracking and

3D analysis that has not been shown in the experimental results.

Appendix D.1: tracking

Earlier in Section [4.1] it was introduced that the tracking of cells could be approached via
machine learning algorithms. This was the first way I tried to do it since it would give me a
good perspective of how direct tracking could be done without using neural networks. For
this purpose, I started creating really simple algorithms to track instances from one frame to
the other, and with each result I came up with an upgrade that would give better and better
results, until I could have something close to tracking cells. All this technical upgrades have a

lot in common with the feature extraction that was introduced in Section B.2.1]

As one can see in Figure (a), without doing any processing to the frames, the predicted
images from the Mask-RCNN model assigns different labels to the cells in consecutive cells.
To fix this one can try to associate in a very simple way, cells from one frame to the other.
Algorithm [I] takes as input two instance masks of consecutive frames and assigns each cell in
the current mask with a cell in the previous one in order to minimize the IoU between the two

instances. As the pseudo-code shows, this is done by looping over the cells of a frame and for

38



2D and 3D Analysis of Microscopy Images

each of them, looping over all the cells in the previous one and calculating the IoU (with a

function previously design) between their two binary masks.

) Frames without processing the predictions

) Frames after preprocessing the predictions using Algorithms |1 andl

Figure 17: Comparative results of the first 4 predicted frames using the model Mask-RCNN for
instance segmentation applied to the first video sequence of the test dataset of 'Fluo-N2DH-
GOWTY’ (a) without applytin any correction and (b) using Algorithms |1 and [2| to assign cells
and propagate the label.

With just this code we can check which cell in a frame is more likely to be the same as one in
the previous frame. Nevertheless, this doesn’t take count of the cells that may enter or exit the
frames, or a cell that divides in two. To deal with this, Algorithm [2| was created. It loops over
two frames at a time and computes the Algorithm [I] to assign the cells and change the label
to that of the cell in the previous frame. After, it checks if in the new frame there are more
instances than the previous one, and it that is the case, it changes the label to those instances
to a new one. Of course, this new label cannot be one previously used, as it is supposed to be

a completely new cell.

After applying this function to the predicted instance masks, we get the result in Figure [17] (b).
This way we can see that same cells in consecutive frames have the same label, which then
propagates to the rest of the frames one by one.

More improvements can be made using the same idea after analysing the dataset one is using
and identifying its most important features. The next step we will focus on regarding cell
tracking will be to implement the Graph Neural Network (GTT) model but also to update

39



2D and 3D Analysis of Microscopy Images

Algorithm 1 Assign Cells

1:
2
3
4
9:
6
7
8
9

10:
11:
12:
13:
14:

function TRACKCELLS(previous_masks, current masks)

unique_previous < length of unique values in previous masks - 1
unique__current < length of unique values in current masks - 1
P(C) <+ length of unique previous -1 (unique current
cost_matrix < zeros matrix of size P x C
for i, pr in Enumerate(unique previous) do
for j,cr in Enumerate(num__current) do
previous < previous_masks X (previous masks == pr)
current < current masks x (current masks == cr)
cost_matrix|i, j| < 1 - IOU (previous, current)
end for
end for
assignment < LinearSumAssignment(cost _matrizx)

return assignments

15: end function

Algorithm 2 Propagate Label

1:
2
3
4
:
6
7
8
9

10:
11:
12:
13:

function TRACKFRAMES(predictions)

current frame < prediction|0]

current labels < unique values in current frame

L < length of current labels

previous_ frame < change labels of current frame to {1,2,...,L}

for current frame in predictions|1:] do
assignments < TrackCells(previous frame, current frame)
current frame <— change labels of current frame regarding assignments
if length of current frame > length of previous frame then

current _frame < add new labels to the cells not assigned

end if

end for

return assignments

14: end function
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this algorithms so that they are capable of track the datasets from our laboratory. Of course,
this way of tracking has its limitations, as it is really specialized in one type of data, so it is
hard to generalize it to other. Nevertheless, since we want to come up with a way to track

particular brain cells, we think this won’t be a problem, but rather an advantage.

Appendix D.2: 3D analysis

In this last section I will include some results or advances that we have made for 3D datasets.
Before giving some examples, I will briefly explain the technical aspects this kind of data

presents and how to work with them. In general, one can find three different types of 3D data:

e Stack-3D: it is the simplest and easiest 3D data type that one can find. This is nothing
more than 2D images of a plane of the object one on top of the other along the last axis.
For this one needs to be able to take images of the object at different heights or depth,
which in the case of cells can be done by adjusting the zoom of the lens of the microscope
in order to focus on different depths. Stacks-3D are used in biomedical imaging as it is

the easiest way to obtain a 3D representation of cells.

e Point cloud: it is a collection of data points in a three dimensional coordinate system.
Each data point represents a specific position in space and can be defined by its x, y,
and z coordinates. They are commonly used in various fields such as computer graphics,
computer vision, remote sensing, geospatial mapping, and 3D modeling. A way to obtain
them is by using multiple sensors or cameras around the object and merging them to get
the 3D perspective. That is way it is not easy to obtain a point cloud directly of cells,

but one can do it indirectly as is shown later in Algorithm [3]

e Meshes: this last representation is probably the most complete one. It has its base
in the point cloud but gives a solution to the problem of having empty spaces between
coordinates. Meshes are normally point clouds where each of the coordinates represents a
vertex of a polygon, usually triangles for their simplicity. Of course there exists multiple
ways to convert a point cloud to a mesh by applying regression algorithms, but the most

common one in the marching cubes algorithm.

To implement 3D segmentation one needs to understand the data type one is working on, as
not all models are capable to deal with the same data structure. In the case of Stacks-3D a
simple approach is to perform segmentation in each of the layers or stack of the image using 2D
segmentation models, like UNet for semantic segmentation or Mask-RCNN for instance. For
2-classes semantic segmentation (cell and background like our case) there is not a big problem,
but when dealing with instance segmentation, one should come up with a way (similar to that
of tracking along frames) to assign the same label to cells in different layers. Even more, if

one is doing 3D tracking using this type of data structure, labels must be propagated through
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time and space (along frames and layers of the image). I the case that point clouds or meshes
are chosen as object representation, other models must be used. In our case we though of
DiffusionNet, as it was developed by one of our collaborators in Ecole Polytechnique and it

can deal with both data types.

Figure 18: Example of 3D microglia image taken from our own laboratory as a stack-3D of 3

layers.

In Figure [1§]is shown an example of a Stack-3D, in this case of 3 layers. The ones from the
CTC consisted of 5 layers and there are more complex datasets with high resolution that can
have even 50 layers. OF course, the more layers, the less space between them and so more
information about the 3D structure. It is clear that this type of dataset is not easy to segment,
as the cells in it have different shapes and sizes, with rounded nuclei and long ramifications.
Also, the background and the instances are not so easy distinguish, only by contrasts and
shadows. By applying Algorithm [3] one can transform this 3D structure to a point cloud by
taking as coordinates the pixels where we consider that there is and instance and by the z
coordinate the layer from the stack-3D that we took that coordinate. In this case we got the
point cloud directly by segmenting individually the instances of the image. This can be done
using multiple GUI’s to delimit the borders of the objects. In Figure [I9 we show the point
cloud representation of one of this instances.

Related to this topic, we would like to go deeper into the subject and be able to properly
segment this type of dataset using point cloud or mesh representation. We already know that
segmentation in 2D via de stack images is possible but it is probably not the best approach, as
there is a lot of information missing between stacks, and a way to deal with it is by converting
it to mesh and filling those gaps with regression. Also, DiffusionNet has great results when
doing image classification and instance segmentation in RNA datasets, what gives us hope
when applying it to cell images. There is still a lot of work in process and multiple methods
and different approaches, but during the months of the internship we have learned a lot about
3D representation and the limitations or barriers that we may encounter, which is also part of

the learning process.
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#50l

Hot

Figure 19: Example of 3D microglia instance taken from our own laboratory as point cloud

representation.

Algorithm 3 Stack to Point Cloud

1: function STACK _TO_POINT _CLOUD(stacked image)
2 point _cloud < empty array
3 values <— empty array
4 for i + 0 to LENGTH(stacked _image) do
5: slice < stacked _imageli]
6 (rows, cols) < SHAPE(slice)
7 Z4 1 > Z-coordinate is the index of the slice
8 for x < 0 to rows do
9 for y < 0 to cols do
10: if slice[z,y] > threshold then > Threshold to consider values
11: APPEND(point _cloud, [z,y, z])
12: APPEND (values, slice[z, y])
13: end if
14: end for
15: end for

16: end for
17: return point cloud, values

18: end function
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